Operator and parameter adaptation in genetic algorithms

نویسندگان

  • Jim Smith
  • Terence C. Fogarty
چکیده

Genetic Algorithms are a class of powerful, robust search techniques based on genetic inheritance and the Darwinian metaphor of “Natural Selection”. These algorithms maintain a finite memory of individual points on the search landscape known as the “population”. Members of the population are usually represented as strings written over some fixed alphabet, each of which has a scalar value attached to it reflecting its quality or “fitness”. The search may be seen as the iterative application of a number of operators, such as selection, recombination and mutation, to the population with the aim of producing progressively fitter individuals. These operators are usually static, that is to say that their mechanisms, parameters, and probability of application are fixed at the beginning and constant throughout the run of the algorithm. However there is an increasing body of evidence that not only is there no single choice of operators which is optimal for all problems, but that in fact the optimal choice of operators for a given problem will be time-variant i.e. it will depend on such factors as the degree of convergence of the population. Based on theoretical and practical approaches, a number of authors have proposed methods of adaptively controlling one or more of the operators, usually invoking some kind of “meta-learning” algorithm, in order to try and improve the performance of the Genetic Algorithm as a function optimiser.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Adaptation in Real-Parameter Genetic Algorithms with Simulated Binary Crossover

In the context of function optimization, self-adaptation features of evolutionary search algorithms have been explored only with evolution strategy (ES) and evolutionary programming (EP). In this paper, we demonstrate the self-adaptive feature of real-parameter genetic algorithms (GAs) using the simulated binary crossover (SBX) operator. The connection between the working of selfadaptive ESs an...

متن کامل

Self-Adaptive Genetic Algorithms with Simulated Binary Crossover

Self-adaptation is an essential feature of natural evolution. However, in the context of function optimization, self-adaptation features of evolutionary search algorithms have been explored mainly with evolution strategy (ES) and evolutionary programming (EP). In this paper, we demonstrate the self-adaptive feature of real-parameter genetic algorithms (GAs) using a simulated binary crossover (S...

متن کامل

Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...

متن کامل

Adaptive Genetic Algorithms Based onCoevolution with Fuzzy Behaviors

Adaptive genetic algorithms dynamically adjust the genetic algorithm connguration during the course of evolving a problem solution in order to ooer an appropriate balance between exploration (overall search in the solution space) and exploitation (localized search in the promising regions discovered in that space). One promising way followed for building adaptive genetic algorithms involves the...

متن کامل

A self-adaptive Multimeme Memetic Algorithm co-evolving utility scores to control genetic operators and their parameter settings

Memetic algorithms are a class of well-studied metaheuristics which combine evolutionary algorithms and local search techniques. A meme represents contagious piece of information in an adaptive information sharing system. The canonical memetic algorithm uses a fixed meme, denoting a hill climbing operator, to improve each solution in a population during the evolutionary search process. Given gl...

متن کامل

The Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS

The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft Comput.

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1997